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bstract

Electrocorticographic (ECoG) signals have been shown to contain reliable information about the direction of arm movements and can be used for
n-line cursor control. These findings indicate that the ECoG is a potential basis for a brain-machine interface (BMI) for application in paralyzed
atients. However, previous approaches to ECoG-BMIs were either based on classification of different movement patterns or on a voluntary
odulation of spectral features. For a continuous multi-dimensional BMI control, the prediction of complete movement trajectories, as it has

lready been shown for spike data and local field potentials (LFPs), would be a desirable addition for the ECoG, too. Here, we examined ECoG
ignals from six subjects with subdurally implanted ECoG-electrodes during continuous two-dimensional arm movements between random target

ositions. Our results show that continuous trajectories of 2D hand position can be approximately predicted from the ECoG recorded from hand/arm
otor cortex. This indicates that ECoG signals, related to body movements, can directly be transferred to equivalent controls of an external effector

or continuous BMI control.
 2007 Elsevier B.V. All rights reserved.
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. Introduction

It is well established that spike signals recorded from the
otor cortex provide information about parameters of arm
ovements, like position and velocity of the hand, force or target

osition (e.g. Thach, 1978; Georgopoulos et al., 1982; Moran
nd Schwartz, 1999). More recent studies showed that neuronal
opulation signals, like intracortical local field potentials (LFPs)
r field potentials measured directly from the brain surface
ECoG), also provide substantial information about movements

Pesaran et al., 2002; Mehring et al., 2003; Leuthardt et al.,
004; Ball et al., 2004; Mehring et al., 2004; Rickert et al., 2005;
cherberger et al., 2005).

∗ Corresponding author at: Bernstein Center for Computational Neuroscience,
lbert-Ludwigs-University, Freiburg, Germany. Tel.: +49 761 203 2580;

ax: +49 761 203 2921.
E-mail address: tobias.pistohl@biologie.uni-freiburg.de (T. Pistohl).

E
e
b
2
t
m
c
M
a

165-0270/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2007.10.001
ontrol; Electrocorticography

As this kind of information can directly be used in devices that
ive people control by means of their brain signals, studies in the
eld of brain-machine interfacing (BMI) have extensively inves-

igated the potential of single trial decoding of movement related
rain activity. Invasive recording techniques with intracortical
icroelectrodes have mainly been used in animal experiments

Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003),
n some cases also in human experiments (Kennedy et al., 2004;
ochberg et al., 2006). However, most studies on the applica-

ion of BMIs in humans explored non-invasive approaches like
EG (e.g. Birbaumer et al., 1999; Wolpaw et al., 2000; Guger
t al., 2000; Blankertz et al., 2003). Considerable progress has
een made with EEG-based BMIs (e.g. Wolpaw and McFarland,
004), but whether this approach will ultimately have the poten-
ial for fast and precise control of an external effector with
any degrees of freedom is still an open question. For techni-
al reasons other non-invasive recording techniques (functional
RI, MEG) are currently not suitable for continuous, real-life

pplication.

mailto:tobias.pistohl@biologie.uni-freiburg.de
dx.doi.org/10.1016/j.jneumeth.2007.10.001
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An alternative approach to record brain activity for a BMI is
he electrocorticogram (ECoG) (Levine et al., 2000; Leuthardt et
l., 2004; Ball et al., 2004; Mehring et al., 2004; Leuthardt et al.,
006). The ECoG is used in patients for pre-neurosurgical diag-
ostics and represents a class of semi-invasive, i.e. intracranial
ut not intracortical, recording techniques. Several reasons sug-
est that ECoG signals might be preferable in a BMI-application
ver spike data or LFP recordings:

ECoG-electrodes do not penetrate the cortical surface, thereby
reducing the potential risk for brain tissue damage.
In contrast to spike data which reflect single cell activity,
ECoG (and LFP) measure population activity, which offers
a better prospect of long-term recording stability.
ECoG (as LFP) requires lower sampling rates for recording
and no spike detection and sorting, thus reducing computa-
tional costs.
Pioneering investigations using the ECoG can already be done
with patients with diagnostic implantations (as in epilepsy
pre-surgical diagnostics), without additional risks for the
patients.

ECoG signals have already proven suitable for the decod-
ng of a limited set of discrete arm movements (Levine et al.,
000; Leuthardt et al., 2004; Mehring et al., 2004; Ball et al.,
004). Real-life applications, however, often have to work in
continuous space. For this purpose, recent EEG or ECoG

pproaches either attempted to transform decoding of discrete
lasses into graded output variables (e.g. Blankertz et al., 2006)
r used the amplitudes of certain signal components (e.g. the
pectral power in different frequency bands) as a continuous
ontrol signal (e.g. Leuthardt et al., 2006). The direct transla-
ion of continuous movements, inferred from neuronal signals,
o a continuous control output, could enable a more natural and
hus, more adequate control. Moreover, it might facilitate the
ubjects’ adaptation to a neuronal control task. The decoding of
omplete, continuous trajectories of natural movements would,
herefore, make an important contribution, going beyond the

ere classification of discrete tasks or states. Schalk et al. (2007)

ecently demonstrated that circular hand movement trajectories
an be approximately inferred from ECoG signals. The aim of
his study is to investigate movement trajectory prediction for
ess restricted, full two-dimensional target-directed movements,

s
t
I
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able 1
ubject overview

Age Handedness Main Lesion

1 34 Right Suspected FCD left anterior ins
cortex

2 57 Ambidextrous HS right; multiple contusion-rel
lesions of the left temporal fron

3 21 right FCD left precentral cortex
4 30 Right FCD right rolandic cortex
5 14 Right FCD right frontal cortex
6 27 Right FCD left supplementary motor a

CD: focal cortical dysplasia. HS: hippocampal sclerosis.
ce Methods  167 (2008) 105–114

aking this approach one step further towards a useful application
n brain-machine interfaces.

. Methods

.1. Subjects

Six patients (see Table 1) suffering from intractable
harmaco-resistant epilepsy were included in the study after
aving given their informed consent. One patient was ambidex-
rous, all others right-handed, none showed clinical signs of
areses. The study was approved by the University Clinic’s
thics committee.

.2. Recordings

All subjects had stainless steel electrodes implanted, most of
hich were regular grids of 64 (8 × 8) or 48 (8 × 6) electrodes

4 mm electrode diameter with 10 mm inter-electrode distance).
n some cases, additional linear electrode arrays and/or arrays
ith two rows of electrodes (same electrode size and spacing)
ere implanted. For the analysis, between 48 and 108 chan-
els per subject were used in total. Electrodes were subdurally
mplanted above fronto-parieto-temporal regions of the left (sub-
ects S1, S2, S3 and S6) or right (S4 and S5) hemisphere. The site
f electrode implantation was exclusively based on the require-
ents of the clinical evaluation.
Electrocorticograms from the cortical hemisphere contralat-

ral to the moving arm were recorded using a clinical AC
EG-System (IT-Med, Germany) at 256 Hz (subjects S1 and S5)
r 1024 Hz (S2–S4 and S6) sampling rate and with a high-pass
lter with 0.032 Hz cutoff frequency.

.3. Electrical stimulation

Electrical stimulation through the electrode grid was per-
ormed using an INOMED NS 60 stimulator (INOMED,
ermany). Trains of 7 s duration consisted of 50 Hz pulses of

lternating polarity square waves of 200 �s each. The intensity of

timulation was gradually increased up to 15 mA or to the induc-
ion of sensory and motor phenomena, whichever happened first.
n this way, a functional mapping of the cortex, covered by the
mplanted electrodes, was possible (see Figs. 1A and 6).

Grid location

ular Left, frontal, some parietal and temporal contacts

ated
tal cortex

Left. temporo-parietal, some frontal and occipital contacts

Left, frontal, some parietal and temporal contacts
Right, fronto-parietal, few temporal contacts
Right, frontal, few parietal and temporal contacts

rea Left, fronto-parietal
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.4. Task

Subjects were seated upright in a hospital bed. They moved
he arm contralateral to the site of electrode implantation, con-
rolling the movement of a green circular cursor on a vertical
CD screen at about 1.5 m distance. In subject S1 hand posi-

ion was tracked using a computer mouse. For subjects S2–S5
and position was tracked using a tracking device consisting
f a vertical handle, grasped by the subjects, and a movement
racking system (Zebris Medical GmbH, Isny, Germany), which
ecorded the position of the handle. Movements were restricted
o the horizontal plane. Subject S6 used a Joystick that trans-
ated inclination of the handle to cursor position. Subjects were
nstructed to guide the cursor onto a highlighted target, which on
ontact changed to a new location, randomly chosen from nine
ositions arranged on a regular grid (Fig. 1C), with a minimal
istance of 7.6 cm between two target positions. For experiments
ith subject S6, the target position was chosen freely within
he workspace, with the only restriction of a minimal distance
f 7.5 cm to the previous target. The radius of the circular tar-
et was 1.85 cm and that of the cursor 1.23 cm. The resulting
orkspace was about 20 cm × 20 cm wide (for both, hand and

w
m
t
s

ig. 1. (A) MRT reconstruction of electrode locations in subject 6. Electrodes are m
lectrodes (orange: arm, red: hand, blue: leg, green: eye, yellow: oro-facial). Circles d
CS) is shown by the dotted white line. (B) Photograph of an ECoG electrode grid plac
f the experimental task: The green curve represents the cursor trajectory within 4 s
ellow numbers. Possible positions, arranged on a regular grid, are indicated by the
urrent yellow target were visible, not the cursor trace and the potential target positio
ass filtered versions (red), their �-band (40–80 Hz) amplitudes (orange) and synchro
ines depict target positions. Data are from the same 4 s as the cursor trace in C.
ence Methods 167 (2008) 105–114 107

ursor). Target positions, times of target appearance and continu-
us cursor positions were recorded synchronized to the neuronal
ignals. During one session, between 80 and 226 (average: 181)
arget reaches were carried out by the subjects. A session lasted
etween 80 and 300 s (average: 167). Each subject performed
etween four and five sessions in total. Subject S3 took part in an
dditional set of experiments (four sessions) after implantation
f additional electrodes.

.5. Prediction of movement trajectories

For decoding we assumed that the four-dimensional hand
tate xt, consisting of hand x-/y-position and velocity, evolved
ccording to the following linear stochastic difference equation:

State model:

t+1 = F · xt + o + wt (1)
here wt is a zero-mean Gaussian noise process with covariance
atrix Q and o a constant offset. In addition, we assumed that

he observed neuronal activity depended linearly on the hand
tate according to the following linear equation:

arked in color according to responses upon electrical stimulation through the
epict sensory responses and filled markers motor responses. The central sulcus
ed directly on the cortex, taken during surgery for implantation. (C) Illustration
of movement, following a sequence of six target positions, indicated by the
dotted white circles. To the subjects, however, only the green cursor and the
ns. (D) Examples of recorded data from two ECoG channels (gray), their low
nously recorded x- and y-positions of the cursor (green and blue). Thin dotted
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Measurement model:

t = H · xt + n + vt (2)

ith vt being a zero-mean Gaussian noise process with
ovariance matrix R, yt being the measurement vector, which
omprises measures derived from the ECoG-recordings at time
, and n, a constant offset of the measurement model.

To predict movement trajectories from measured neuronal
ctivity, we need to estimate the probability density of the hand
tate xt at time t, given the history of observed ECoG signal
ectors p(xt|{y1, . . ., yt}). The mean of this density is consid-
red as the predicted hand state x̂t . Since the time-invariant state
pace model defined by Eqs. (1) and (2) is linear and Gaussian,
his probability density is also Gaussian (Anderson and Moore,
979; Harvey, 1989) and is therefore completely defined by its
ean xt and covariance Pt at time t. Using this fact, it is possible

o derive (see e.g. Anderson and Moore, 1979; Harvey, 1989) an
fficient recursion for the estimation of the probability density,
he so-called Kalman filter. The Kalman filter proceeds in two
teps. The first step is the “prediction step” – this yields a first
stimate of the mean and covariance matrix of the hand state at
ime t according to the linear transition Eq. (1) of the hand:

Prediction step:

x̂−
t = F · x̂t−1 + o

P̂−
t = F · P̂t−1 · FT + Q

(3)

here x̂−
t and P̂−

t refer to the estimated mean and covariance
atrix of the one-step prediction density, which is also Gaussian.
In the second step, the “update step”, the mean and covari-

nce matrix of the one-step predictor are corrected, taking the
easured neuronal activity into account, to obtain the final mean

ˆ t and covariance P̂t :
Update step:

Kt = P̂−
t · HT · (H · P̂−

t · HT + R)
−1

x̂t = x̂−
t + Kt · (yt − n − H · x̂−

t )

P̂t = (I − Kt · H) · P̂−
t

(4)

t denotes the so-called Kalman gain which controls the influ-
nce of the discrepancy between the measured and the predicted
euronal activity on the final estimate of the hand state. If the
euronal activity is very noisy compared to the dynamical model
f the hand, the Kalman gain will be very small. In that case, the
alman filter primarily relies on the model of the hand dynam-

cs and only adds a small correction in the update step. In case
f a good signal-to-noise ratio of the neuronal data, the Kalman
lter weighs the neuronal activity more strongly and the update
tep results in a larger correction.

As neuronal activity yt we used the low-pass filtered ECoG
ignals: Signals were smoothed with a Savitzky-Golay filter (3rd
rder, 0.75 s width). The neuronal signal vector yt at time t con-

ained the smoothed signals of all decoded electrodes at time t–τ.
hus, a positive value of τ reflects neuronal activity preceding
ovement. We tested different values for τ, ranging from 0 ms

o 625 ms, in steps of 1/16 s (62.5 ms).

a
m
i
t

ce Methods  167 (2008) 105–114

We used a four-dimensional state space xt, consisting of
orizontal and vertical position (Cartesian coordinates) and hor-
zontal and vertical velocity. The ECoG-signals were correlated
o all these movement parameters. By use of the Kalman filter,
lso the correlation to velocity can contribute to the prediction
f hand position, since the linear relationship between different
tate variables is given through F in the state model (Eq. (1)) and
s exploited in the prediction step (Eq. (3)). In that way, includ-
ng velocity in the filter process can improve the performance of
osition decoding.

.6. Evaluation of predicted positions against measured
ositions

We predicted movement trajectories, i.e. the x-/y-positions of
he cursor in time steps of 62.5 ms (i.e. 16 Hz sampling), from
he ECoG signals recorded during arm movements. Predictions
ere made using mutually exclusive test and training data sets:
hile one-fourth of an experimental session was used as a test

et for decoding, all remaining recordings from the same subject
nd recording day were used as training set to determine the
odel parameters. For the computation of averages and standard

eviations, the measures from each part were weighted by the
mount of decoded data in that part.

For the evaluation of prediction performance, we calculated
he Pearson correlation coefficients between predicted and mea-
ured (x- and y-) positions individually for each coordinate and
ach test set. In the following all presented correlation coeffi-
ients are averages across all test sets, in Figs. 4 and 5 we also
veraged the coefficients of both coordinates (x and y).

In each prediction period, we assumed the starting position
but not the velocity) to be known, meaning that it was preset
n the x- and y- position entries of the vector x̂0. Further on,
osition was decoded continuously until the end of the prediction
eriod. Evaluation of decoding performance was restricted to
he time period where the Kalman filter remained in a stable
tate, i.e. when the Kalman gain Kt had approached a constant
evel. The temporal evolution of Kt as well as Pt is illustrated
n Fig. 2. Observe that at about 1–2 s after the beginning of a
est session, the Kalman gain and the error covariance reached
stable state and were no longer subject to significant changes.
his represents an optimal balance between the state and the
bservation model for the given amount of observational (i.e.
euronal) and state noise.

.7. Signal features

In one analysis we used the low-pass filtered ECoG signals as
euronal features in yt. To extract this feature, which we termed
he low-frequency component (LFC), the raw ECoG signals
ere smoothed with a Savitzky-Golay filter (2nd order, 0.5 s
idth). The Savitzky-Golay filter was applied such that only

ignals before the current movement time were used, in order to

void contributions from signals following that instant of move-
ent and thus to minimize possible influences by proprioception

n the decoding. The neuronal signal vector yt at time t con-
ained the smoothed signals of all decoded electrodes at time
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Fig. 2. Temporal evolution of the Kalman filter during prediction. Left panel: Development of the coefficients in the Kalman gain Kt over the first 3 s of a session.
Different shades represent coefficients associated with position (black) and velocity (gray). All coefficients reach a stable state after about 1–2 s. Right panel:
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evelopment of the Eigen-values of the error covariance matrix of the predictio
Kalman gain coefficients and Eigen-values of the error covariance) are aligned
hange no more than marginally.

–τ. Thus, a positive value of τ reflects neuronal activity pre-
eding movement. Lacking prior knowledge we tested different
alues for τ, ranging from 0 ms to 750 ms. The use the LFC was
otivated by successful use for the decoding of movement tra-

ectories and directions from LFP signals (Mehring et al., 2003;
ickert et al., 2005) and decoding of movement direction from
CoG (Mehring et al., 2004; Ball et al., under revision). In these
tudies, the directional information of the LFC of ECoG/LFP
as higher than the directional information of features based on
igher frequency signal components. It was also found to be the
ost informative signal part of ECoG in the study of Schalk et

l. (2007), where it was called the local motor potential (LMP).
In another analysis we used amplitude modulations of differ-

nt frequency bands as neuronal feature for decoding. Ampli-
udes were extracted by using the Hilbert transform (e.g. Bruns,
004): First, the raw ECoG signals were band pass filtered (5th
rder Butterworth filter), then the resulting signals were Hilbert
ransformed to obtain the so-called analytic signal. To extract
he amplitude one has to take the magnitude of the complex
alued analytic signal. Finally, the resulting amplitude modula-
ions were smoothed by a Savitzky-Golay filter (2nd order, 0.5 s
idth). By choosing different frequency ranges in the band pass
lter the amplitude modulations of different frequency bands
an be extracted. It should be noted that the band pass filter was
uch that only signals before the current movement time were
sed, in order to avoid contributions from signals following that
nstant of movement and thus to minimize possible influences by
roprioception in the decoding. For decoding we used amplitude
odulations exclusively as also in conjunction with the LFC.

. Results
.1. Decoding from the low-frequency component

First, we predicted movement trajectories from the low pass
ltered ECoG signals. Examples of real and predicted move-

t
e
d
(

ver the same time. Again after about 1–2 s a stable state is reached. All traces
ir values after reaching a stable state (marked as ‘s’) in which both, Kt and Pt,

ents over a time of 15 s are shown in Fig. 3. Predicted and actual
ovement trajectories did not match perfectly but the predicted
ovement trajectories were an approximate reconstruction of

he actually performed movements. To get a better impression
f the quality of the movement prediction an animated recon-
truction of the actual and the predicted cursor movement is
resented in the supplementary material.

Decoding was tested for a set of different temporal delays τ

etween neuronal activity and movement, ranging from 0 ms to
50 ms (see Section 2). A positive delay τ indicates the time
y which neuronal activity used for decoding, preceded the
ovement. In Fig. 4A, we show the average correlation coeffi-

ients between real and predicted hand position in dependence
f τ. The optimal delay was slightly different for each subject,
ut generally the optimal prediction performance was found at
hort delays. On average across all subjects, a delay of 93.75 ms
=3/32 s) was found best when movement prediction used the
FC. Thus, further results presented here were computed using
fixed τ = 93.75 ms without any further optimization.

.2. Decoding from higher-frequency activity

We studied the use of amplitude modulation in higher fre-
uencies by first evaluating a sequence of bands of 10 Hz
idth, centered around 5 to 95 Hz, in steps of 10 Hz. We

xcluded frequencies higher than 100 Hz from the analysis
ecause from two of our subjects, data was recorded with a
ampling rate of only 256 Hz, preventing analysis of very high
requencies. Fig. 5A presents the accuracy of position predic-
ion from those bands for all subjects. Results vary considerably
cross subjects, yet a broad band in the γ-range showed the
ighest decoding accuracy among all frequencies higher than

hose, corresponding to the LFC. Decoding from amplitudes
xtracted from a band of 40–80 Hz yielded a similar depen-
ence on the temporal delay τ as the decoding from LFC
see Fig. 5B). However, in combination with the LFC fea-
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ig. 3. Examples of predicted movement trajectories. Real trajectories of 15 s
olumns: x- and y-positions; right two columns: x- and y-velocity in the same tim
oefficients (CC) for the plotted time period are shown in the upper left corner
ures, γ-activity 40–80 Hz did not significantly improve the
rediction of hand positions, as shown in Fig. 4B. In the fol-
owing, we therefore report results based on decoding the LFC
lone.

3

m

ig. 4. Prediction accuracy of position for different temporal delays τ between movem
ovement. Prediction performance is given by the average (over sessions and both c

-positions of the cursor. Each colored line depicts the results from one subject (S1–
ow frequency component (LFC). The light gray bar indicates the value of τ that produ
as then used as a common value for all subjects in further analysis. (B) Prediction f
and.
are given by black traces and predicted trajectories overlaid in gray. Left two
iod as for positions. For each subject (rows), one example is given. Correlation
h plot.
.3. Influence of state space composition

In our recordings, the ECoG signals were correlated to several
ovement parameters, including position, velocity and accelera-

ent and neuronal activity. Positive values indicate that neuronal data preceded
oordinate axes) correlation coefficient between measured and predicted x- and
S6). The black line shows the average across subjects. (A) Prediction from the
ced the best prediction in the average over all subjects at 93.75 ms (3/32 s). This
rom a feature space comprising both, LFC and �-amplitudes from a 40–80 Hz
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Fig. 5. Prediction accuracy of position for amplitudes of different frequency bands. Results are averaged over all sessions. Each colored line depicts the results from
one subject (S1–S6). The black line shows the average across subjects. (A) Scan over different frequency bands of 10 Hz width, up to 100 Hz. Results differ largely
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or different subjects (colors as in Fig. 3), but on the average low frequencies an
ecoding from amplitudes of the 40–80 Hz band for different delays τ.

ion. As these parameters bear a relation to each other, combining
hem within the state model of a Kalman filter may improve
he decoding accuracy of each individual movement parameter.
hus, the prediction accuracy for position might be increased
y also using velocity and/or acceleration in the state space.
n the other hand, a higher-dimensional state space implies
ore parameters in the model relating neuronal activity to move-
ent (Eq. (2)) and thereby, the estimation of these parameters

ecomes less reliable. This might decrease the decoding accu-
acy. In order to investigate this tradeoff, we calculated the
rediction accuracy for different state spaces (see Table 2):
osition only; position and velocity; position and acceleration;
osition, velocity and acceleration. As neuronal feature, the LFC
f the ECoG at a delay of 93.75 ms before the movement was
sed. A state space comprising position and velocity yielded the
est predictions with a slightly higher performance than a state
pace additionally including acceleration, and a much higher
erformance than state spaces consisting of only position or

osition and acceleration. We therefore decided to use a four-
imensional state space model, comprised of x-/y-position and
elocity.

able 2
rediction accuracies for different state space compositions

State space composition

Position Position,
velocity

Position,
acceleration

Position, velocity,
acceleration

1 0.11 0.23 0.11 0.19
2 0.05 0.29 0.05 0.24
3 0.05 0.16 0.04 0.12
4 0.29 0.42 0.27 0.42
5 0.22 0.42 0.21 0.39
6 0.26 0.45 0.25 0.44

0.16 0.33 0.16 0.30

alues given for each state space composition and subject reflect correlation
oefficients between real and predicted positions, averaged over all test sets and
veraged over correlation coefficients for x- and y-position. The last row depicts
he average across subjects.
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quencies in the �-range yield the highest accuracy. (B) Prediction accuracy for

.4. Decoding performance

Fig. 6 shows an overview over the prediction accuracy for x-
y-position and velocity for all subjects. Four subjects (S3–S6)
ad electrodes implanted above parts of the primary motor area,
ncluding regions related to arm and hand movement, as was
onfirmed by electrical stimulation. Three of them (S4, S5 and
6) yielded notably better decoding results than the other sub-

ects (S1, S2) who had no electrodes implanted over parts of
rimary motor cortex related to arm or hand movement. For S3
owever, decoding performance was relatively weak, in spite of
aving electrodes placed favorably over hand/arm motor cortex.

likely reason is the abundance of interictal epileptic activity
n most of the channels of S3.

As a control we computed the prediction performance that
an be obtained by chance. To this end, random signals with
he same auto-correlation as the ECoG signals were generated
nd then filtered and decoded in the same way as the ECoG. To
nsure a realistic auto-correlation of the random signals, the raw
CoG signals were Fourier transformed, the phases were set to
uniform random variable, and the result was transformed back

o the time domain by an inverse Fourier transformation. The
rediction performance for the random signals (white bars in
ig. 6), indicate that the correlation coefficient for a random
ignal with the same auto-correlation as the ECoG signals was
lose to zero and thus, correlations between real and predicted
and trajectories obtained from the ECoG really stem from infor-
ational content in the ECoG rather than from general signal

roperties.

.5. Decoding topographies

In a separate analysis, we investigated the origin of the
ecoded signals. For this purpose, we calculated the decoding

erformance, measured by the average correlation coefficient
f all test sets (as described in Methods), but using only sig-
als from small subregions of the cortex. Results from those
ubregions were mapped on the area that was covered by the
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Fig. 6. Overview of decoding performance for LFC signals, using a fixed temporal delay of 93.75 ms. Performance is measured by the (weighted) average correlation
coefficient between the real and predicted hand position (dark grey bars) and velocity (light gray bars). Weighting was done to take the different length of the sessions
into account. Left and right bars of one shade represent measures for position and velocity in the horizontal (x-) and vertical (y-) direction, respectively. White bars
show a control measure, where x- and y-position were predicted from a random signal (noise) with the same auto-correlation as the LFC data for each subject. Error
bars denote the (weighted) standard deviation. (A) Subjects S4–S6 had electrodes placed over hand/arm motor cortex, which represents the optimal recording site
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or arm movement decoding (see Fig. 7). Furthermore no strong epileptic activit
1–S3 only suboptimal recordings were available for analysis. (*) S1 and S2 ha
ompromised by strong interictal epileptic activity on almost all recording sites

lectrode grid, yielding a spatial map of the prediction perfor-
ance (see Fig. 7). Since the decoding performance, obtained

rom the measurement of a single ECoG-electrode, was very
eak, we evaluated the performances obtained by using the sig-
als from all possible square quartets of adjacent electrodes.
o assign significance values to the average correlation coeffi-
ients, we calculated the probability for the null hypothesis of

o positive average correlation for each quartet on the basis of
he standard-error of the mean (assuming a normal distribution
f prediction values across test sets). The grey contours in Fig. 7
ndicate the areas of significant positive correlations.

b
h
N
a

ig. 7. Topographies of prediction performance, measured by the correlation coefficie
rids. Decoding was based on the signals from quartets of neighboring electrodes; the c
natomical areas are given by the results of electric stimulation through the implanted
t the hand (H), arm (A), shoulder (S), leg (L), oro-facial (O) or eyes (E). The approx
RI scans, is indicated by the white dashed lines. Gray arrows beneath each graph

orrelation coefficients was significantly (p < 0.01, determined through the standard e
requency component (LFC). Bottom row: topographies for decoding from �-activity
taminated the signal, allowing for a decent decoding accuracy. (B) For subjects
electrodes implanted over hand/arm motor cortex. (**) Recordings of S3 were
h probably accounts for the low prediction performance.

For decoding from the LFC (upper row of images in Fig. 7),
ites with high correlations were found in arm and parts of hand
otor areas, where available, but also in other motor areas, where

o hand/arm responses to electrical stimulation were found.
lso, some non-primary motor areas allowed for movement
rediction, in particular pre-motor areas, but also parietal and
omatosensory cortex. For a prediction from activity in the �-

and sites of good decoding were more focal, but also with
ighest correlations in hand and arm motor cortex if available.
ote that for interpreting the decoding topographies, the vari-

bility over sessions should be taken into account. Overall, the

nt. Prediction performance is plotted in color code over the area of the electrode
orrelation coefficient was then interpolated over the whole grid area. Functional
electrodes: motor responses (pink letters) and sensory responses (white letters)
imate location of the central sulcus, determined from the individual anatomical
point rostrally. Gray contours on the maps outline regions where the average

rror of the mean) above zero. Top row: topographies for decoding from the low
(40–80 Hz).
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istribution of correlation coefficients over cortical areas should
e considered qualitatively rather than quantitatively, and posi-
ions of high correlations only as approximate regions with high
nformational content.

. Discussion

Control over continuous states is an important modality for
rain-machine interfacing, as it is more flexible and generalized
han a control based on the classification of discrete states. In
ther ECoG- or EEG-based BMI applications, continuous con-
rol was either achieved by willingly modulating the amplitude
f naturally occurring rhythms of the brain (e.g. Leuthardt et
l., 2006), or by creating a continuous control variable from
discrimination of originally discrete states (e.g. Blankertz et

l., 2006). With single-unit activity (Taylor et al., 2002; Wu
t al., 2006) or local field potentials (Mehring et al., 2003)
ecorded from monkeys, however, continuous decoding has been
chieved directly by using the activity related to hand/arm move-
ent trajectories. Here, we show that the ECoG in humans

lso contains information on continuous two-dimensional
and movement trajectories and might therefore be used for
MI control in a similar manner as multiple single-unit or
FP activity.

The task we chose allowed for a large variety of different
ovement trajectories. In total, the paradigm allowed for 72 dif-

erent combinations of start- and end-targets. Yet, there was no
lear separation into distinct trials. Movements were continuous
ver a whole recording session in the sense that no conceivable
old periods of hand position occurred. This allows for bet-
er generalization over the entire workspace than a task with
nly a small number of stereotyped movements (e.g. Taylor
t al., 2002; Mehring et al., 2003; Schalk et al., 2007). The
redicted movement trajectories approximately reproduced the
ctually performed trajectories (cf. Fig. 5). Prediction accuracy
as best in those cases were recordings were available from the

lectrically excitable part of the hand/arm motor cortex with-
ut being heavily contaminated by frequent epileptic potentials.
herefore, our results clearly demonstrate that ECoG signals
rovide useful information regarding the entire two dimensional
ovement trajectories.
As neuronal feature for decoding, we primarily used the low

requency component (LFC) of the ECoG. This signal compo-
ent is already well established as providing information about
ovements in previous studies, as was shown for directional

lassification from ECoG (Mehring et al., 2004; Ball et al., under
evision) and for the prediction of entire trajectories from LFP
Mehring et al., 2003), and very recently from ECoG (Schalk
t al., 2007). Nevertheless, other signal components, e.g. ampli-
udes of higher frequency bands (Leuthardt et al., 2004; Rickert
t al., 2005; Schalk et al., 2007; Ball et al., under revision), can
rovide additional information about movements. In fact, we
lso used amplitude modulations of different frequency bands

or decoding and our results show that the �-band yields the
ighest decoding accuracy among frequency bands above the
ow-frequency component (i.e. > ∼10 Hz). Using the �-band
n conjunction with the LFC, however, did not significantly

t
f
a
s
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ncrease the prediction accuracy. Our study was restricted to
requency bands below 100 Hz, since for two of our subjects
ecordings were only available at a sampling rate of 256 Hz, and
t might be that frequency bands above 100 Hz carry additional
nformation about movement (cf. Schalk et al., 2007). There-
ore, the optimal choice of frequency bands for the decoding of
rajectories still deserves further investigation.

How does our prediction performance, based on recordings
ith relatively large and widely spaced epicortical electrodes

4 mm diameter with 10 mm center-to-center inter-electrode dis-
ance; cf. Methods) in humans, compare to the performance
btained from intra-cortical microelectrode recordings in mon-
eys? Wu et al. (2006) used a Kalman filter approach in a
imilar task to decode two-dimensional trajectories from firing
ates of 42 single units (single unit activity, SUA). In contin-
ous trials of 1 min length they obtained average correlation
oefficients of ∼0.88 for hand position, which is substantially
igher than in our study where the average correlation coeffi-
ient was 0.43 for subjects with coverage of hand/arm motor
ortex and without strong interictal epileptic activity. However,
piking activity is not easily recorded in a stable manner for long
ime periods, requires appropriate algorithms for spike sorting,
nd many electrodes are needed to record the spiking activity of
uch a large number of units simultaneously. For field potentials,
he difference between our results using epicortical recordings
nd previous results using intracortical recordings seems to be
maller: Mehring et al. (2003) used a support-vector regression
n intracortical local field potentials (LFP) from eight electrodes
n both hemispheres and obtained average correlation coeffi-
ients of ∼0.7 for short trajectories (about 1 s) of restricted and
tereotyped movements (center-out movements). In both of the
bove studies (Mehring et al., 2003; Wu et al., 2006), electrodes
ere specifically placed in the arm area of the monkey motor

ortex, whereas in our case, electrodes were placed according
o the requirements of the clinical epilepsy evaluation. More-
ver, recordings from smaller epicortical electrodes arranged in
enser grids could possibly further improve the ECoG prediction
erformance.

The only other study to date investigating the prediction of
ovement trajectories from ECoG in humans (Schalk et al.,

007) yielded an average correlation for position of ∼0.5 in
ve subjects that all had good electrode coverage of the motor
ortex. This is similar to the prediction accuracy we obtained
average correlation coefficient of 0.43) for comparable subjects.
owever, Schalk et al. (2007) used relatively restricted circular

racking movements. In our study, less restricted, target-directed,
ull two-dimensional movements at varying speeds were per-
ormed and therefore, we extend the investigation of Schalk et
l. (2007) to more complex movements.

How much do our predictions depend on eye movements (e.g.
aused by target appearance or cursor movement) or on sen-
ory input (e.g. somatosensory or proprioceptive), rather than
ntended motor output? Decoding topographies (Fig. 7) suggest

hat predictions in S3–S6 were primarily achieved by signals
rom arm or hand motor areas, less by somatosensroy areas
nd only very little by areas related to eye movement. While
ensory influence cannot be completely ruled out, it should be
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oted that neuronal activity before the actual movement was
sed for decoding, i.e. before the proprioceptive feedback of the
redicted movement, disqualifying it as the primary source of
he decoded signals. This important issue may, however, be more
horoughly addressed in experiments with direct visual feedback
f the prediction itself, without real hand movement of the sub-
ect: If in that case control was successfully achieved via brain
ignals alone, a role of somatosensory input or proprioception
ould be highly unlikely (Levine et al., 2000; Leuthardt et al.,
004, 2006; Blankertz et al., 2006).

Based on other experiments with online feedback, we also
xpect further amplification of predictive signal components
hen subjects learn to control a cursor by means of their brain

ignals (e.g. Taylor et al., 2002; Carmena et al., 2003). Therefore,
he two-dimensional cursor control based on the signals investi-
ated in this study might, in fact, yield a precise and continuous
MI control modality. The present study serves as a first step

owards this goal by showing the principal usefulness of arm
ovement related ECoG signals for such a control paradigm.
final decision concerning the usefulness of our approach for

MI application can only be made after experiments with online
eedback of predictions.
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